

9th Gynaecological Cancer Symposium

Friday 26th February 2016

Ultra-Radical surgery: The way forward for the UK?

C. William Helm Northern Gynaecological Oncology Center, Gateshead, England

No Disclosures

Ultra-Radical surgery: The way forward for the UK?

Ovarian Cancer

where we are
how we got here
how we can move forward

% 5 yr survival ovarian cancer by Country

Age-standardized % 5yr survival for ovarian cancer

Country	2005-2009
Sweden	43.5
Norway	40.3
Australia	37.5
Canada	37.5
Denmark	37.3
England	31.5

Walters S. et al <u>www.bjcancer.com</u> DOI:10.1038/bjc.2015.265

5-year Survival of Cancers in Women

Primary Site	% 5-year survival
Breast	89.2
Endometrium	81.6
Bladder	77.1
Colon/Reetum	65 ()
Ovary	45.3
Lung/Bronchas	17.1

SEER Cancer Statistics Review http://seer.cancer.gov/csr/1975_2011

Ovarian Cancer Stage at Presentation

FIGO stage		%		
Ι		28.3		
	II	8.4		
	IIIA	2.6		
	IIIB	5.6		
	IIIC	42.0		
	IV	13.0		

Heintz P. et al Int J Gynecol Obstet 2006; 95 Suppl 1:S161-92.

Remains confined to peritoneal cavity

Relatively non-invasive

ovarian cancer is sensitive to

AND

mop up the small volume residual

chemotherapy

Chemotherapy for ovarian cancer

EFFECT OF 2-CHLORO-2'-HYDROXYDIETHYL SULFIDE (HEMISULFUR MUSTARD) ON CARCINOMATOSIS WITH ASCITES

ARNOLD M. SELIGMAN, M.D., ALEXANDER M. RUTENBURG, M.D.,

Seligman and Rutenberg Cancer 5:354-363, 1952

Surgery for ovarian cancer

TUMORS OF THE FEMALE PELVIC ORGANS

JOE VINCENT MIRIGS, A.B., M.D., F.A.C.S. Inscinato in Surgery, Harmond Values Schwei, Surgan, & Ort-Pathody, Kosaminoski Generof Hospital, America Surgan, Caller P. Hunington Browschi Heagthi, Singeron, Pandelle Unspital, Heartschurcht State General Hospital, March 1998

WY

WITH A FORKWORD BY

ROBERT B. GILLENOUGH, M.D. Provident Elect of the American United of Stream, 1983 (1983) Present Observations of the Intel of Directory in Stream Constrained Stream for Control of Converse Provident of the American Amercheling for Universe Provident of the American Amercheling for Universe Provident of the American Amer-

261 ILLUSTRATIONS

NEW YOEK THE MACMILLAN COMPANY 1984

1934

'as much tumor as possible should be removed to enhance the effectiveness of postoperative.....'

Surgery for ovarian cancer

Hudson C. J Obstet Gynaecol Br CommonW 1968;75:1155-1160

Residual disease and survival

n=102 stage II and III

Griffiths NCI Monograph 42:101-104, 1975

% 5yr survival

Survival related to residual disease

Chang and Bristow Gynecol Oncol 2012;125: 483-492

William E. Winter III, G. Larry Maxwell, Chunqiao Tian, Jay W. Carlson, Robert F. Ozols, Peter G. Rose, Maurie Markman, Deborah K. Armstrong, Franco Muggia, and William P. McGuire

n=1895

Residual	n	PFS (m)	OS (m)
microscopic	437	33.0	71.9
0.1-1.0cm	791	16.8	42.4
>1cm	667	14.1	35.0

William E. Winter III, G. Larry Maxwell, Chunqiao Tian, Jay W. Carlson, Robert F. Ozols, Peter G. Rose, Maurie Markman, Deborah K. Armstrong, Franco Muggia, and William P. McGuire

Conclusions

Longest survival associated with no residual disease

William E. Winter III, G. Larry Maxwell, Chunqiao Tian, Jay W. Carlson, Robert F. Ozols, Peter G. Rose, Maurie Markman, Deborah K. Armstrong, Franco Muggia, and William P. McGuire

Conclusions

• There is a survival benefit associated with cytoreduction to ≤ 1 cm residual

William E. Winter III, G. Larry Maxwell, Chunqiao Tian, Jay W. Carlson, Robert F. Ozols, Peter G. Rose, Maurie Markman, Deborah K. Armstrong, Franco Muggia, and William P. McGuire

Conclusions

 Cytoreduction to >1 cm residual has no benefit on overall survival

survival in relation to extent of residual disease

Chi et al. Gynecol Oncol (2006) 103: 559-564

William E. Winter III, G. Larry Maxwell, Chunqiao Tian, Jay W. Carlson, Robert F. Ozols, Peter G. Rose, Maurie Markman, Deborah K. Armstrong, Franco Muggia, and William P. McGuire

Prognostic Factors

- e age
- histologic subtype
- performance status
- extent of residual disease

Radical Surgery in Ovarian Cancer

NOTHING is OPTIMAL OPTIMAL is NOTHING

Surgery for Recurrent Disease – Residual Disease

Harter et al Ann Surg Oncol 2006, 13:1702-1710

What Are the Current Surgical Objectives, Strategies, and Technical Capabilities of Gynecologic Oncologists Treating Advanced Epithelial Ovarian Cancer?

Scott M. Eisenkop, M.D.,*1 and Nick M. Spirtos, M.D.†

*Womens' Cancer Center, Encino-Tarzana, 5525 Etiwanda Avenue, Suite 311, Tarzana, California 91356; and †Womens' Cancer Center, Palo Alto, 900 Welch Road, Suite 300, Palo Alto, California 94304-1800

Received December 7, 2000; published online August 1, 2001

- Reasons for suboptimal cytoreduction:Unresectable upper abdominal metastases85%
- Disease sites precluding optimal cytoreduction:
 Disease involving base of mesentery
 Portal triad disease
 Bulky diaphragmatic metastases
 Surface diaphragmatic metastases
 51%

Eisenkop SM et al Gynecol Oncol 2001; 82, 489–497 (2001)

% of patients with upper abdominal metastases

n = 474

stage IIIC patients undergoing CRS between 1989-2005

Fig. 1. Abdominopelvic regions. (A) Upper abdomen cephalad to the greater Fig. 1. Abdominopelvic regions. (A) Upper abdomen cephalad to the great Fig. 1. Abdominopelvic regions. (A) Upper abdomen cephalad to the greater omentum. (B) Mid-abdomen. (C) Pelvis. omentum. (B) Mid-abdomen. (C) Pelvis. omentum. (B) Mid-abdomen. (C) Pelvis.

None 116 (24%) Minimal (<1cm) 161 (34%)

Bulky 197 (42%)

Zivanovic O et al. Gynecol Oncol 2007; 108:287-292

left diaphragm

aorta under the right crus

left gastric

stomach

common hepatic

10

IVC

splenic

Gynaecologic Oncology Practice UK

surgical proc	Procedure	PDS
	diaphragm stripping	2.7%)
Infra-colic omentectomy Supra-colic omentectomy Pelvic lymphadenectomy/lymp	splenectomy	0.6%
Pervic lymphadenectomy/lymph Para-aortic lymphadenectomy/ly Bowel resection Stoma raised	supracolic omentectomy	53%
Splenectomy Diaphragmatic stripping Residual disease <2 cm	residual disease	4 % 7 2
Residual disease <1 cm No residual disease	no residual	35.6 <mark>6</mark>
Barton D. e	<1cm	47.3 _{7–351}

Gynaecologic Oncology Practice UK

operating time

Average operating time (hours)	
<2	8/41 (20%)
2–3	24/41 (58%)
3-4	8/41 (20%)
>4	1/41 (2%)

Barton D. et al Gynecologic Oncology 131 (2013) 347-351

Primary Surgery followed by chemotherapy

or

Chemotherapy followed by surgery followed by chemotherapy

for Ovarian Cancer?

Benefits of neoadjuvant chemotherapy

fewer procedures
shorter operating time
increased rate of no residual
reduced morbidity
shorter hospital stay

BUT can you give NAC without impacting survival for the patient?

Primary chemotherapy versus primary surgery for newly diagnosed advanced ovarian cancer (CHORUS): an open-label, randomised, controlled, non-inferiority trial

Sean Kehoe, Jane Hook, Matthew Nankivell, Gordon C Jayson, Henry Kitchener, Tito Lopes, David Luesley, Timothy Perren, Selina Bannoo, Monica Mascarenhas, Stephen Dobbs, Sharadah Essapen, Jeremy Twigg, Jonathan Herod, Glenn McCluggage, Mahesh Parmar, Ann-Marie Swart

Lancet 2015; 386: 249-57

Eligibility:

imaging evidence of a pelvic mass with extra-pelvic disease compatible with FIGO 1988 stage III or IV ovarian, fallopian tube, or primary peritoneal cancer

fit for surgery and chemotherapy

CHORUS: overall survival

CHORUS: duration of surgery, residual disease

	Primary surgery (n=255)	Primary chemotherapy (n=219)
Median length of operation (min)	120	120
	(12-450, 80-161)	(30-330, 90-155)
Missing data	27	32
Residual disease (all patients)		
0 cm	39 (17%)	79 (39%)
≤1 cm	57 (24%)	68 (34%)
>1 cm	137 (59%)	54 (27%)
Missing data	22	18

Post op grade 3/4 morbidity

	Primary surgery (n= 255)	Primary chemotherapy (n=219)
Any grade 3 or 4 adverse event	60 (24%)	30 (14%)*
Haemorrhage	8 (3%)	14(/%)
Venous thromboembolism	5 (2%)	0 (0%)
Dysrhythmia	3 (1%)	0 (0%)
Hypotension	6 (2%)	2 (1%)
Fever (no infection)	0 (0%)	0 (0%)
Diamhoea	4 (2%)	2 (1%)
Intestinal or rectal fistula	2 (1%)	1(<1%)
Nausea	12 (5%)	1(<1%)
Vomiting	12 (5%)	1(<1%)
Bowel obstruction	2 (1%)	1(<1%)
Gastrointestinal pain	4 (2%)	2 (1%)
Vaginal or vesicovaginal fistula	1 (<1%)	1 (<1%)
Urethral obstruction	1 (<1%)	0 (0%)
Weight loss	0 (0%)	0 (0%)
Infection	16 (6%)	6 (3%)
Missing data	3	10

Mortality

Death within 28 days after surgery	14 (6%)	1(<1%)
Disease progression	5 (2%)	
Pulmonary emboli	2 (<1%)	1(<1%)
Sepsis	3 (1%)	
Problems related to fluid balance or renal failure	2 (<1%)	
Coagulopathy or disseminated intravascular coagulation	1(<1%)	
Respiratory failure	1(<1%)	

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Neoadjuvant Chemotherapy or Primary Surgery in Stage IIIC or IV Ovarian Cancer

Ignace Vergote, M.D., Ph.D., Claes G. Tropé, M.D., Ph.D.,

NEJM 2010; 363:943-953

Randomized Trial n = 632

ORIGINAL ARTICLE

Neoadjuvant Chemotherapy or Primary Surgery in Stage IIIC or IV Ovarian Cancer

Ignace Vergote, M.D., Ph.D., Claes G. Tropé, M.D., Ph.D.,

Eligibility: biopsy-proven Stage IIIC or IV invasive epithelial ovarian carcinoma, primary peritoneal or FT

Vergote I.et al NEJM 2010; 363:943-953

Overall survival NAC versus Frontline Surgery

Vergote I.et al NEJM 2010; 363:943-953

Interpretation

CHORUS is the second trial to investigate timing of surgery in the first-line treatment of advanced ovarian cancer. We recruited a population with a poor outlook; patients were older and had a worse performance status than patients in other trials where patients were recruited after surgery. Our findings were consistent with the results of the EORTC 55971 trial (figure 3).²¹ These two trials confirm that primary chemotherapy before delayed surgery is an alternative clinical management strategy to primary surgery, which could reduce morbidity in many women with advanced ovarian cancer.

Median Survival after maximal surgery

author	year	n	months
Eisenkop	2003	408	58.2
Panici	2005	189	62.1
Chi	2009	210	54
Vergote	2010	334	29
Kehoe	2015	225	22.6

Eisenkop et al 2003; 90 (2003) 390–396 Panici et al 2005 JNCI 2005;97:560-566 Chi et al Gynecol Oncol 2009;114:26-31

Ignace Vergote versus Dennis Chi

author	year	n	median PFS (m)	median OS (m)
Vergote	2010	334	12	29
Chi	2012	285	17	50

Vergote I. et al NEJM 2010; 363:943-953 Chi DS. et al Gynecol Oncol 2012;124:10–14

Survival after maximal surgery

author	year	n	median (m)
Eisenkop	2003	408	58.2
Panici	2005	189	62.1
Chi	2009	210	54
Vergote	2010	334	29
Chi	2012	285	50
Kehoe	2015	225	22.6

Eisenkop et al 2003; 90 (2003) 390–396 Panici et al 2005 JNCI 2005;97:560-566 Chi et al Gynecol Oncol 2009;114:26-31 Is perioperative visual estimation of intra-abdominal tumor spread reliable in ovarian cancer surgery after neoadjuvant chemotherapy?

Systematic visual evaluation of tumour spread at the start of

- primary surgery/diagnostic laparoscopy (n=39)
- interval surgery (n=16).

Compared with histopathological analysis 220 biopsies from primary and 92 biopsies from interval surgery

Hynninen, J et al. Gynecol Oncol 2013;128:229-232

Accuracy of surgeon being able to tell cancer from benign disease

	primary surgery	NAC	P value
sensitivity	98	86	< 0.001
specificity	76	76	ns
accuracy	95	84	<0.001

Hynninen, J et al. Gynecol Oncol 2013;128:229-232

Platinum resistance after neoadjuvant chemotherapy compared to primary surgery in patients with advanced epithelial ovarian carcinoma $\stackrel{i}{\sim}$

n =425 patients, retrospective

95 NAC-IDS330 Primary surgery.

Following retreatment with platinum on recurrence

32 (88.8%) in the NACT-IDS group were PR

62 (55.3%) in the PDS

p=0.001

Rauh-Hain et al Gynecol Oncol 2013;129:63-68

Disadvantages of neoadjuvant chemotherapy

- surgery more difficult
- assessment of cancer less accurate
- rate of no residual?
- platinum resistance increased?
- survival worse

Primary Surgery versus NAC

The incidence of major complications after the performance of extensive upper abdominal surgical procedures during primary cytoreduction of advanced ovarian, tubal, and peritoneal carcinomas $\stackrel{}{\approx}$

n=141

- **Grade 3–5** complications 31 (22%)
- Mortality 2 (1.4%)
- 21/31 (68%) managed with percutaneous drainage of infected or non-infected collections

overall median survival 57 months

Chi et al Gynecologic Oncology 119 (2010) 38-42

Cochrane meta-analysis IP versus IV chemotherapy for ovarian cancer

tudy	log [Hazard ratio] (SE)	Hazard ratio (Fixed) 95% Cl	Weight (%)	Hazard ratio (Fixed) 95% CI
Alberts 1996	-0.27 (0.12)		29.5	0.76 [0.61, 0.95]
Armstrong 2002	-0.29 (0.13)	-	23.0	0.75 [0.58, 0.97]
Gadducci 2000	-0.40 (0.28)	• •	5.1	0.67 [0.39, 1.15]
Kirmani 1994	0.22 (0.35)	3	→3.2	1.24 [0.62, 2.47]
Markman 2001	-0.21 (0.11)		32.7	0.81 [0.65, 1.00]
Yen 2001	0.12 (0.25)	3 .	6.2	1.13 [0.69, 1.86]
Zylberberg 1986	-1.23 (1.12)	•	•0.3	0.29 [0.03, 2.66]
rtal (95% CI) st for heterogeneity c st for overall effect ?	hi-square=5.10 df=6 p=0.4	3 = =0.0 %	100.0	0.80 [0.71, 0.90]

Jaaback and Johnson Cochrane Database Syst Rev 2006 (1) CD005340

GOG protocol 172

Paclitaxel 135 mg/m²/24h Cisplatin 75 mg/m² q 21 days x 6

Paclitaxel 135 mg/m²/24h Cisplatin 100 mg/m² IP D2 Paclitaxel 60 mg/m² IP D8 q 21 days x 6

Armstrong et al NEJM 354:34-43 2006

Overall survival by treatment arm GOG 172

Armstrong et al NEJM 2006, 354:34-43

Prognostic factors for stage III epithelial ovarian cancer treated with intraperitoneal chemotherapy: A Gynecologic Oncology Group study

GOG 172: patients with no residual disease at frontline CRS who received IP with IV therapy

Landrum et al Gynecologic Oncology 130 (2013) 12–18

Long-term overall survival of patients treated with IV versus IP chemotherapy

Tewari D. et al JCO 10.1200/JCO.2014.55.9898 Mar 2015

Long-Term Survival Advantage and Prognostic Factors Associated With Intraperitoneal Chemotherapy Treatment in Advanced Ovarian Cancer: A Gynecologic Oncology Group Study

Devansu Tewari, James J. Java, Ritu Salani, Deborah K. Armstrong, Maurie Markman, Thomas Herzog, Bradley J. Monk, and John K. Chan

IP chemotherapy associated with

23% decreased risk of death 12% decreased risk of death per IP cycle

Tewari D. et al JCO 10.1200/JCO.2014.55.9898 Mar 2015

Long-term overall survival of patients treated with IV versus IP chemotherapy

Tewari D. et al JCO 10.1200/JCO.2014.55.9898 Mar 2015

GOG 172: Survival by BRCA status

Lesnock et al BJC 2013 www.bjcancer.com | DOI:10.1038/bjc.2013.70

Future of Ultra Radical Surgery in UK

Annual Report of the Chief Medical Officer, 2014

Prof Dame Sally Davies

Women's Health

- Radical surgery for women with ovarian
- Obesity

Gynaecologic Oncology Practice UK

Caseload (number per year)	
Average	46.5
Median	45
Min	6
Max	100
Patients receiving NAC (%)	
Average	37.4
Median	30
Min	0
Max	95

need 100 surgeons doing 60 cases per year

Barton D. et al Gynecologic Oncology 131 (2013) 347-351

factors involved in poor outcomes

- extent of surgery
- delay in referral
- delay in diagnosis
- waiting time for surgery
- time to chemotherapy
- no regional chemotherapy

The Future

- Catching up
- Swimming against the tide of Increasing population Aging population Lifestyle factors Funding Politics

Age structure of UK population 2010 and 2035

http://www.ons.gov.uk/ons/dcp171778_235886.pdf

Future of Ovarian Cancer Treatment in UK

How to get there?

Education Training Audit Research Regional Centres

Public awareness Community care Depoliticisation Investment

Ultra-Radical Surgery in the UK