

Epigenetic Modulation of Ovarian Cancer Cells

Mr Jaydip Raut ST7/ Research Fellow Derby Teaching Hospitals NHS Foundation Trust School of Medicine, University of Nottingham

Objective

- Recap what do we know already
- Understand Epigenetics in cancer
- Analyse the design, methods and results
- Discuss future works

What do we know so far

- A common feature of Cancer is:
 - high acid load in the tumour microenvironment
- To counteract cancer cell uses no. of mechanisms — Family of two pore domain potassium (K+)channels
- Previous studies have proven increased expression of voltage gated and K₂P in Ovarian cancer.

Epigenetics and Cancer

• Epigenetics is the study of mechanism that alter gene expression without changing the primary DNA nucleotide sequence.

- Several different types
 - DNA methylation,
 - histone modifications

DNA Methylation and Cancer

- Normally,
 - 80% of all nucleotides are found to be methylated in mammalian genomes.
 - Rest 20%, CpG islands remain hypomethylated.
- In Cancer,
 - the CpG islands are more methylated
 - Rest of the genome, are hypomethylated.

Derby Teaching Hospitals

NHS Foundation Trust

Epigenetic modulation in ovarian cancer cells maintained in altered microenvironment affects cancer cell proliferation through pH-sensitive membrane proteins that include K⁺ channels.

Aim

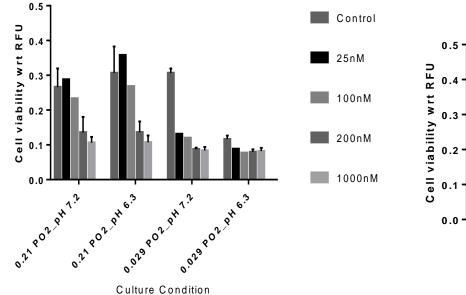
- Establish the relation between low pH_e and high pH_i and pharmacologic epigenetic modulation of SK-OV-3 cell lines.
- To investigate the level of expression of K⁺ channels in cancer cells after epigenetic modulation
- Selection and designing of gene specific primers compatible for bisulphite converted genomic DNA.

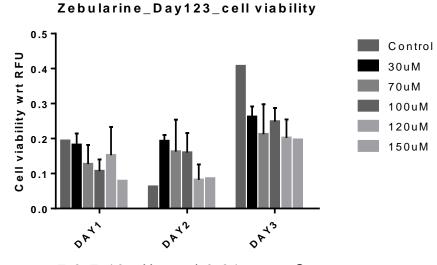
Derby Teaching Hospitals

NHS Foundation Trust

Design: Methods and Materials

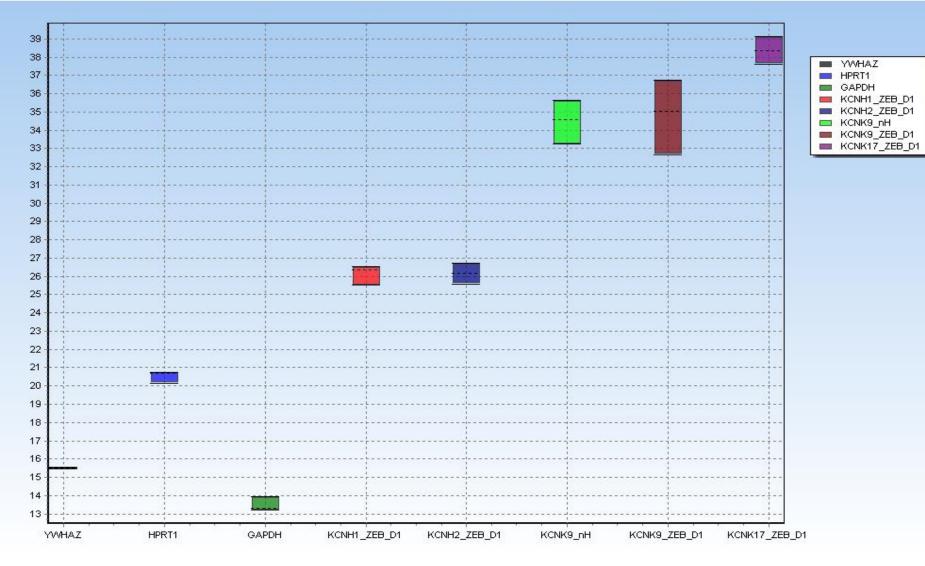

- Proliferation of SKOV3 cells at pH_e 6.3 and pH_e 7.5 is assessed after exposing them to epigenetic modulation
 - 5-Azacytidine
 - Zebularine
 - Trichostatin -A
- Mechanism of action





NHS Foundation Trust

Results

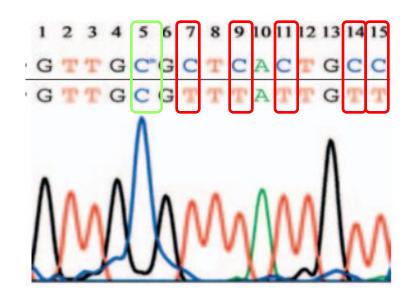


7.2-7.42 pH_{e} and 0.21 atm pO_{2}

Derby Teaching Hospitals

Relative Gene expression of K⁺Channel in presence and absence of ZEB

Further Works


- Detection of CpG islands adjacent to promoter region of KCNK9, KCNK17, KCNK10 genes coding for TASK3, TALK2 and TREK2.
- Designing two sets of primers (compatible to Bisulphite conversion) for nested PCR reactions.

Bisulphite Treatment and conversion

- DNA with epigenetically modulated (C^mpG) was processed.
- The methylated cytosine remains intact.
- Unmethylated cytosines were completely converted into uracil following bisulfite treatment
- Detected as thymine following PCR.

NHS Foundation Trust

Any questions?

Summary

- K2P channels are overexpressed in Ovarian cancer
- Epigenetic modulation alters their expression
- Does the modulation alter the methylation status of the promoter region?

Acknowledgement

- Dr Raheela Khan
- Dr Christina Tufarealli
- Mr Ujjal Bose
- Mr Viren Asher
- Mr Anish Bali